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Abstract—The Ecovat is a seasonal thermal storage solution
consisting of large underground water tank divided into a num-
ber of segments that can be individually charged/discharged. The
goal of the Ecovat is to supply heat demand to a neighbourhood
throughout the entire year. In this work we extend an integer
linear programming model describing the charging/discharging
of such an Ecovat buffer by adding a global (yearly) planning
step to the model. We compare the results from the model using
this extension to previously obtained results and show significant
improvements. We also show that the model is very robust against
prediction errors.

I. INTRODUCTION

In an effort to reduce green house gas emissions as well
as the dependency on (the finite supply of) fossil fuels we
see an increasing trend towards renewable alternatives. A
disadvantage of these renewables is that their generation peaks
often do not coincide with peaks in demand, both on a daily
basis and on a seasonal scale. A way to alleviate this problem
is the introduction of (thermal) storage (e.g. [1], [2]) into the
system. A lot of research has been done on such thermal
storage (for an overview of thermal storage technologies see
e.g. [3]), as well as on seasonal thermal storage in particular
(e.g. [4D.

The Ecovat [5] system is a seasonal thermal storage solu-
tion. It consists of a large underground water tank consisting
of a number of vertical segments that can be individually
charged/discharged using heat exchangers integrated into the
buffer walls. The buffer is accompanied by a number of heat
pumps, photovoltaic thermal (PVT) panels and a resistance
heater, which can be used as energy sources. For a more
detailed description of the system we refer to [6].

In previous work [6] we developed an integer linear pro-
gramming (ILP) model to optimize the charging/discharging
of an Ecovat buffer. However, as noted in that work one of the
shortcomings of the model is the inability to plan ahead for
future opportunities or needs. This shortcoming was especially
visible for the case where a demand temperature of 60 °C was
needed. In that case the energy content of the buffer stayed
very low for a large portion of the simulated year leading to
higher costs for supplying the heat demand.

In this work we propose adding a global planning step for
a complete year prior to solving the ILP model. In this global
planning daily targets for the energy content of the buffer
are generated based on the predicted energy prices and heat
demand for the optimization period. The ILP model of [6] is
then altered slightly to make sure that the energy content of
the buffer stays close to these generated targets.

II. MODEL

The goal of the Ecovat buffer is to supply the heat demand,
both for space heating and tap water, of a neighbourhood while
minimizing costs. This means the buffer will be charged with
energy at times when it is locally available, e.g. from PVT
panels, or when the energy price is low.

The problem we aim to solve is to generate a target for the
energy content of the Ecovat buffer at the end of every day over
the time horizon, which ensures that enough energy is available
throughout the year. We use 15 minute intervals, which means
that a target is set every 96 intervals. To ensure some flexibility
in the ILP model we require the energy content to stay between
a predetermined minimum and maximum capacity, Cy,;, and
Cinaz respectively. Furthermore we require the energy content
of the buffer at the end of the time horizon to be at least equal
to the energy content at the start to ensure a smooth operation
of the system after the time horizon as well.

We define the set of time intervals as Z = {1, .., N;,,; } and
the set of segments in the buffer as S = {1,.., Nseq}. As
a measure of the energy content in the buffer we define the
amount of useful energy, U;, as the amount of energy in all
segments at temperatures higher than the demand temperature,
T, at the end of interval :
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U; = VieT, (1)

where E; is the amount of energy needed to raise the tem-
perature of segment s by 1 °C and T; , is the temperature of
segment s at the end of interval <.

To generate the energy targets for every day in the time
horizon we solve the following problem:

Hylc}iani T e, (2a)
s.t. Ui=U;_1+e x;—d; VieZ, (2b)
Cmin < Ui < Cmaa: Vie I7 (20)
UN;,. = U, (2d)
0<az; <1, (2¢)

where z; is the decision variable that determines how much
energy is stored during interval ¢, e; is the maximum amount of
energy that can be stored during interval ¢, p; is the predicted
energy price during interval ¢ and d; is the predicted heat
demand during interval i. The values of z; can then be used
to calculate the corresponding daily energy targets.
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Fig. 1. Targets using perfect predictions or no predictions for a heat demand
temperature of 60 °C.

As input for this problem we need predictions for the heat
demand d and the energy prices p during the time horizon. An
estimate for the expected daily heat demand can be obtained
from historical data, however, reliable predictions for the
energy prices are much harder to obtain. For this reason
we compare results from a case where we assume perfect
predictions (PP) for the energy prices with a case where we
have no predictions (NP) to determine how robust our model
is to prediction errors. In the NP case we simply distribute the
intervals during which we store energy in the buffer equally
over the entire horizon. Figure 1 shows the generated targets
for the PP case (using real Dutch energy prices from 2014)
as well as for the NP case for a demand temperature of 60
°C, starting at January 1. The targets for both cases differ
significantly from each other. In the next section we further
investigate the influence of these differences on the overall
performance of the Ecovat.

The output of optimization problem (2) can be used as input
for the ILP model described in [6]. For this an extra term
is added to the objective function of the ILP model, which
quadratically penalizes for being under target, U;, at the end
of each day and linearly rewards for being over the target.

III. RESULTS

To investigate the impact of adding target values to the
model in [6], we carried out a test using the same inputs for
the ILP model as used in that paper. This means that heat
demand profiles are used that are averages of historical data
from 2005 to 2011 and energy prices from the year 2014.

We compare results using the ILP model with and without
adding the global planning step described in this paper in
Figure 2. A significant improvement when using the global
planning is observed. The problem of the buffer being low
on energy has been resolved as expected, while the objective
value (total costs) is only slightly increased, from -27174 to
-26992 (for the PP case). However, this increase in objective
value is compensated by the much higher energy content of
the buffer at the end of the time horizon when using a global
planning.

Figure 2 also shows the evolution of the temperature dis-
tribution over the 5 segments in the Ecovat buffer in both
the PP and NP cases. We can see that both cases look very
similar even though the targets shown in Figure 1 are very
different. The objective values are also very similar; -26992
in the PP case versus -26891 in the NP case. We carried out
further tests using energy prices from 2011, 2013 and 2015
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Fig. 2. Showing the evolution of the temperature distribution over the 5
segments (171, .., T5) in the Ecovat buffer for both the PP and NP cases. The
demand temperature in this case is 60 °C.

and found similar results. The largest difference in objective
value between PP and NP cases found is 1.8%, showing that
the presented model is very robust against prediction errors.

IV. CONCLUSION

In this work we have presented an extension to the ILP
model for an Ecovat buffer. This extension consists of incor-
porating a global planning step into the model. We showed
that this significantly improves the results when compared to
the model without a global planning. Furthermore, we showed
that the proposed extension is very robust against prediction
errors in the energy prices by a comparison between a case
using perfect predictions and a case where no predictions are
used. This means the model does not require accurate, hard to
obtain, predictions for energy prices to perform well.
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