
DEMKit: A Flexible Smart Grid Simulation and
Demonstration Platform Written in Python
Gerwin Hoogsteen, University of Twente, Department of EEMCS, g.hoogsteen@utwente.nl

Smart Grids and Distributed Energy Management (DEM)
methodologies are heavily studied within academia and the-
oretical models and control methodologies have been de-
veloped over the last years. To validate these models and
control methodologies, often simulations are carried out in
several connected domain specific tools and environments. The
complexity of such a setup often hinders a simple transition
from models to a simple proof-of-concept for demonstra-
tion and real-world experiments. On the other hand, for
demonstration, large field tests arise that require validated
and optimised implementations of control algorithms. These
specialised implementations often lack flexibility to change
the implementations after observing inconvenient behaviour
or even fundamental errors in the concept itself. However,
due to the multidisciplinary nature of the energy system, it
is often hard to see effects of implementation decisions on all
subsystems on beforehand.

To tackle this problem, a new and agile DEM platform
for simulations, co-simulations and simple demonstrators is
presented in this paper. We call this platform DEMKit and
has a focus on energy management within smart microgrids
and households. The main goal of this platform is to provide a
package of components for efficient and effective research on
DEM methodologies that should be usable to any researcher
with some scripting knowledge. On the other hand, the plat-
form should be able to bring simple simulation models to life
on real appliances as a proof-of-concept within a day. The
latter is made possible by keeping the simulations as close as
possible to the real environment, such that most of the code
base can be re-used.

The software is written in Python to benefit from dozens
of scientific packages and object oriented programming struc-
tures. On the other hand, this allows researchers to run
the software on multiple operation systems and embedded
platforms with little experience in computer science. Support
for hundreds of domestic appliances and an user interface are
available through the use of the open-source home automa-
tion software OpenHAB [1]. With such rapid prototyping,
feedback and changing requirements based on the proof-of
concept can be incorporated in an early stage of development.
Since simulation and demonstration share the same code-base,
measurements from a test can be imported to re-simulate and
resolve potential issues for a new prototype.

The following section present the general features and struc-
ture of the software. Subsequently, the interface for simulations
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and demonstration is given, followed by a short conclusion and
recommendations.

I. PLATFORM OVERVIEW

To enable the rapid prototyping, a cyber-physical sys-
tems approach is taken during the development. Different
components representing physical devices and control logic
are available. These components include devices, metering
equipment, controllers and physical infrastructure. In addition
a central object, referred to as the host, is used to carry
out tasks such as simulation logic for simulations or an
application programming interface (API) for demonstration
purposes, which are discussed in Section II. The platform itself
provides functions such as printing information, initialisation
functionality and load models. Such load models, also written
in python, consist of the instantiation of multiple components
and the links between them.

One common concept throughout the platform is the use of
discrete time intervals for simulation and logging. An interval
can be as small as one second and multiple timebases can
be used throughout the model. All components implement
the timeTick-function to advance in time and calculate energy
consumption, update predictions and perform state changes if
applicable. Data is stored in the timeseries database InfluxDB
[2]. Tools as Grafana [3] can be used for plotting and analysis
of the data. A system overview is depicted in Fig. 1.

Devices are the key components within the platform .
Within simulations, generic device components are available
that model the default behaviour of a device. For DEM
methodologies, the flexibility offered by devices is of interest.
Therefore, the generic flexibility classes as defined in [4] are
implemented, making it straightforward to generate and use
flexible load models within the platform. These device classes
include static loads, buffers, whitegoods and electric vehicles.
In addition to the behaviour and flexibility description, each
device also implements default functionality such as storage
for schedules and variables expressing the current power
consumption for multiple commodities such as active power
(for the three phases separately), reactive power or heat. In
case of a proof-of-concept, the generic device components
have to be replaced by a connector that links to a real device,
such that control logic from the model can read the state of
the device and change its behaviour.

These schedule variables can be filled by the optional con-
troller components, which separates control algorithms from
devices in order to test different control strategies. The con-
trollers are divided in two groups, namely device controllers
and fleet controllers. Device controllers implement device



Fig. 1. Diagram of the DEMKit platform with a model and external software.

specific prediction, scheduling and online control algorithms
and communicate with a fleet controller. Fleet controllers
ensures that a fleet of devices is steered towards the objective
power profile or value. Currently two control methodolo-
gies are implemented: Profile Steering [5] (single and multi-
commodity support) and auction-based control mechanism [6]
(single commodity only).

Power consumption of multiple devices can be aggregated
into one value through a meter component. This meter com-
ponent can be linked to a node in the flow model. Such
a flow model is consists of a graph, which represents the
physical energy distribution network. Connected to this graph
is a load-flow solver to calculate the steady state within this
network. Currently a load-flow solver for three-phase four-
wire unbalanced low-voltage electricity distribution networks
is implemented. This solver reads out the consumption data of
the meter components to determine the voltages and currents
in the network.

II. SIMULATION AND DEMONSTRATION

Within a simulation, the simulationHost provides the sim-
ulation logic. All components defined within a model link to
this host and the simulation is started using the startSimulation
command from the model description. The simulation host
first initialises each component within the model. After this,
a for-loop is started to simulate time progression based on

the selected simulation timestep size. Within this loop, the
timeTick function of all components is called. Since there is
a dependency between the flow simulation, meter components
and devices, the order of simulation is important. Therefore,
timeticks are distributed first to controllers and devices in
randomized order. After all these components received the
timetick, the meters receive a timetick, followed by the flow
simulators. The randomized order of controllers and devices
simulated the real-world situation where ordering in events
may not be given either.

These choices make it easy to transfer a pure simulation
model to a co-simulation or demonstration environment. In
order to do so, the simulationHost needs to be replaced by
a restHost. Device models that are to be replaced by their
physical counterparts need to be exchanged for device connec-
tor components. In the current implementation, this restHost
provides an REST API to provide access through HTTP calls
and JSON data objects. The API exposes functionality for
external timeticks, event messages to device and controller
objects. The control structure itself can also be distributed over
multiple embedded systems as control signals are included in
the current API. A set of device connectors is implemented
which interfaces with a set of items in the OpenHAB [1]
home automation platform. This allows bi-directional commu-
nication between the DEMKit platform and OpenHAB items.
Subsequently, these OpenHAB items are linked to properties
of supported devices such as, among others, Tesla electric
vehicles or Miele smart home appliances.

III. EVALUATION, CONCLUSION AND FUTURE WORK

The first stable version of DEMKit provides tools for feature
rich simulations with a holistic view on smart grids. Within the
six months since its development started, the DEMKit platform
is already embraced within the Computer Architecture for
Embedded System research group of the University of Twente.
Currently, simulations for several research papers are ran on it
and new control concepts are tested. Furthermore, a real-world
co-simulation currently runs stable within a household. In this
co-simultion, measurement data of household loads and a solar
panel are included, together with a washing machine that can
be delayed by the control system, and a virtual battery with
peak-shaving as objective for this household.

Further improvements are more realistic time management,
such as the supertime concept used in Ptolemy [7]. Also
adding an event based message bus, as used in OpenHAB,
would improve the flexibility of the platform.
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